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A mathematical description of transient 
crack growth behaviour in glass* 

M. K. FERBER 
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee 37830, USA 

Transient crack growth behaviour resulting from time-dependent changes in crack-tip 
radius can occur near the fatigue limit. In the present work, mathematical expressions 
describing this transient behaviour are developed assuming that a dissolution reaction is 
responsible for changes in crack geometry. An elliptical crack is analysed because of its 
mathematical simplicity. The theoretical model slightly underestimates the extent of 
crack-tip blunting occurring below the fatigue limit. However, the predicted transient 
behaviour associated with the crack-tip sharpening processes which take place above the 
fatigue limit compares favourably with experimental data for glass. 

1. Introduction 
A time-dependent strength reduction is often 
observed in ceramic or glass specimens which are 
subjected to mechanical stresses in moist environ- 
ments [1-3].  This behaviour, which is attributed 
to stress-assisted or slow crack growth, is typically 
represented by plotting the time-to-failure, t~, of a 
statically loaded sample as a function of the 
applied stress a a (static fatigue). Alternatively, one 
may directly measure the subcritical crack 
velocity, V, as a function of the stress intensity 
factor K I. An examination of typical aa--t~ and 
V - K  I data for glass [4-6] often provides evidence 
of a critical % or KI value below which strength 
degradation due to stress corrosion does not occur. 
This critical point, which is called the stress corro- 
sion or static fatigue limit, is of considerable inter- 
est for design applications. 

Although several mathematical models describ- 
ing slow crack growth behaviour have been 
developed, only a limited number have adequately 
dealt with the threshold region. One of the most 
familiar is that of Charles and Hillig [7]. In their 
treatment, slow crack growth was attributed to a 
stress-enhanced chemical dissolution reaction 
occurring along the crack surface. They assumed 
that strength degradation did not occur when the 

rate of change of the crack-tip stress, o, was zero. 
This concept can be illustrated mathematically 
using the Inglis approximation [8], 

o = 2oa(a/p) 1/2 (1) 

where Oa is the applied stress, ~ is the crack length, 
and p is the crack-tip radius. Taking the time 
derivative of both sides yields 

de %(alp)i, z ~d(lna) d(ln_p) l 
d-t = [ dt dt J (2) 

where aa is taken as constant. When Oa is above 
the threshold value, the first term in brackest 
dominates; d(ln a)/dt >> don p)/dt, and the crack- 
tip stress depends only upona. Since d(ln a)/dt > O, 
Equation 2 predicts that a will increase with time, 
with failure occurring when the cohesive strength 
is reached. However, near the fatigue limit, 
d(ln a)/dt is comparable with d(ln p)/dt such that 
do/dt-+ O, and no strength degradation occurs. 
This variability of the crack-tip radius near the 
threshold region has not been widely recognized. 

The recent crack-growth study by Michalske 
[9] has done much to elucidate the transient 
nature of crack-tip blunting and sharpening pro- 
cesses in glass. In his experiment, soda-lime-silica 
dcb (double cantilever beam) specimens, initially 
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Figure 1 Experimental crack 
growth data for glass showing 
transient behaviour following 
ageing below fatigue limit [9]. 
Arrows indicate points at which 
P reaches limiting value (defined 
by dotted line). 

containing a sharp crack, were loaded to a KI value 
below the threshold stress intensity factor, Kith, 
determined from well-established V - K  I data. 
Following a 0 to 16h ageing period in a water 
environment, the samples were reloaded to KIa 
(KIa >KI t~)  and the crack length measured as a 
function of  time. The results, which are reproduced 
in Fig. 1, revealed that a finite time was generally 
required for the crack velocity to reach its steady- 
state value as dictated by the V-KI data. The length 
of  the time delay was proportional to both the age- 
ing time and the inverse of  Kia. The author attri- 
buted this transient behaviour to the time required 
for the crack tip, which had become blunted during 
the ageing step, to reach its steady-state shape*. 
However no rigorous mathematical model was 
proposed. 

In this paper, a simple expression describing the 
blunting process for K1 < Kit~ is first derived. The 
resulting information is then used to predict the 
dependence of  crack length on time as KI is raised 
above Kith- Finally, the theoretical curves are com- 
pared with existing data. 

2 .  M a t h e m a t i c a l  t r e a t m e n t  

We begin by assuming that the crack configuration 
can be adequately described by elliptical geometry 
(Fig. 2). Since for this configuration 

p = ( 3 )  

where b is the length of  the minor axis, the crack 
geometry can be completely described by p and a. 
These two parameters also dictate the stress level 
at the crack tip in accordance with Equation 1. 

Next we assume that the time-dependent 
changes in p, which result from the chemical inter- 
action between the environment and crack surface, 
are controlled by two competitive processes, i.e. 

at  Vo + (4) 

The quantity Vo is representative of  the corrosion 
(dissolution) rate of  the crack surface located 

�9 away from the highly stressed crack-tip region 
(Fig. 2). It is assumed that this rate is approxi- 
mately constant and comparable with the surface 
recession rates exhibited by glass specimens aged 
in water. Estimates of  Vo, which can be obtained 
from experimentally measured dissolution rates of 
glass in water [I0,  11], range from H I  X 10 -v  
msec -1 to ~ 2  X 10-1Smsec-l . t  The latter value 
was used to approximate Vo in all subsequent cal- 
culations. 

The second quantity in Equation 4, (8p/aa) 
(Oa/Ot), represents the effect of  crack length upon 
p. It it is assumed that b ~ constant, then the 

�9 In glass the steady-state p is estimated to be approximately 5.0 X 10- m. 
~Dissolution rates given in [1] and [11] were adjusted to reflect conditions at 25~ An activation energy of 68.5kJ 
rnol -a (16.1 kcal rnol -~) was used in the associated calculation. 
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TABLE I Crack growth parameters calculated from I y V-K I behaviour of soda-lime-silica glass exposed to water 

L__ [6] 
aa el (msec_l) 2.906 X 10 -a* 

x ~ Vc = '~  c~(Pa)-' 7:26S X 10 -,~ 

e4(m) 5.360 X 10 -7 
c s (Pa) -a 1.803 X 10 -1~ 

Figure 2 Schematic representation of crack geometry and 
associated corrosion processes. Elliptical crack changes in 
p are dictated by the competitive corrosion rates V o and 
vc. 

differentiation of Equation 3 yields: (~p/Oa)= 
--(p/b) 2. This is a reasonable assumption when 
K I > Kim, since the variation of a with t is orders 
of magnitude greater than that for b; when K I < 
Kith, aa/at ~ 0 (as discussed below) and p depends 
only upon V0. 

The time dependence of a arises primarily from 
the stress-assisted bond breaking occurring at the 
crack-tip. There is evidence [12, 13] that the 
mechanisms responsible for this behaviour are 
quite different than those controlling the simple 
dissolution rate Vo. A suitable expression for ~a/~t 
can be obtained by modifying the theoretical 
V - K  I relationship developed by Brown [ 12], 

~a 
Ot Vc(P, o) = [clexp(c2o)]r (5a) 

dp = {1 - -  ex p [ - - C  3 + (c4/p)--CsO]} (5b)  

where Vc is the corrosion rate at the crack tip and 
cl to cs are constants characterising the slow crack 
growth process. This expression is derived by 
assuming that the bond-rupturing process is 
thermally activated and thus can be described 
using reaction rate theory [14]. In this respect, 
represents the overall driving force for crack 
growth. When steady-state crack growth con- 
ditions prevail, p is constant (5.0 x 10-t~ and 
Vc depends only upon o and thus KI, [KI = 
1/2o(7rp)1/2]. At the fatigue limit, KI = Kith so 
that r and thus Vc equal zero. The crack growth 
constants used in the present study (Table I) were 
determined by fitting the V-KI  data (at 25 ~ C) of 
Wiederhorn and Bolz [6] toEquation 5. 

When KI < Kuh, Vr approaches zero, and Equa- 
tion 4 can be integrated to give 

Pa -- Po = Vota (6) 

where Pa is the radius following the ageing period 
t a and #o is the value prior to the ageing treat- 
ment. For t a=  5.76 x 104 sec (16 h), Equation 6 
predicts that /9 will increase by 23% to 6.15 x 
10 -1~ m. This quantity compares favourably with 
the 50% value calculated by Michalske [9]. 
Reasons for the slight discrepancy are discussed 
later. 

If, following the ageing period, the stress inten- 
sity factor is raised above the threshold to KIa, the 
crack velocity Vc will be below its steady-state 
value due to the blunting process. Since V e is 
typically larger than Vo (even for the blunted 
crack, Equation 4 predicts that the crack-tip radius 
will gradually decrease until the limiting value of 
5 x 10-1~ is reached. The time ts required for 
completion of this sharpening process can be 
calculated by rearranging Equation 4 and then 
integrating both sides. The result is 

Po 
= fPa [Vo-- (p/b)2Ve] -' dp (7) ts 

where P0 and Pa have values of 5.0 x 10-1~ and 
6.15 x 10-1~ respectively. Since Kza, which is a 

known quantity, equals 1/2o(plr) in, a depends 
only on p so that Vc can be expressed entirely as a 
function of p (see Equation 5). Therefore, the 
integral in Equation 7 can be readily determined 
using numerical techniques. The corresponding 
plots of crack length against time are shown for 
various Kia values in Fig. 3. The dotted portion of 
each curve represents the transient period during 
which p decreases to its limiting value. During this 
time V c gradually increases from its value at p = Pa 
to the steady-state velocity Co = Po)- 

A comparison between Figs. 1 and 3 reveals 
fairly good agreement between experimental and 
predicted behaviour. Unfortunately, a thorough 
comparison is not possible due to the lack of 
experimental data in the region associated with the 
transient behaviour. The absence of data primarily 
reflects the experimental difficulties involved in 
measuring small changes in crack length over short 
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Figure 3 Crack growth behav- 
iour predicted from Equation 7. 
The dotted lines indicate the 
transient period associated with 
sharpening processes. 

time intervals. Consequently, the data in Fig. 1 
represent crack growth behaviour after steady- 
state conditions are established. Nevertheless, esti- 
mates of  the transient time interval t s can still be 
obtained from the experimental results by assum- 
ing that steady-state conditions prevail when the 
crack extension exceeds 0.02 mmt'. In this case ts 
is equal to the x-intercept obtained by extrapolat- 
ing the crack growth data in Fig. 1 to the hori- 
zontal line, a = 0 .02mm (dotted line). Table lI 
gives the experimental and predicted values of  ts 
as well as the corresponding steady-state crack 
velocities. There is excellent agreement between 
the respective t s quantities. However, the experi- 
mental and predicted V e values exhibit rather sig- 
nificant variations, which primarily reflect uncer- 
tainties in the crack growth parameters in Table I. 

3. Discussion 
In the present model, the time-dependent changes 
in p (i.e., blunting and sharpening processes) are 
solely determined (via Equation 4) by the sum of 

two competitive chemical processes described by 
the two rates: V0 and Ve. The quantity Vo repre- 
sents the rate of  surface corrosion in the absence 
of  any significant crack-tip stresses. When KI is 
less than the experimental threshold, Vo domi- 
nates the crack-tip blunting occurs. However, the 
lack of  complete agreement between predicted and 
experimental values of  the blunted radius Pa sug- 
gests that t h e  assumption of  a uniform surface 
corrosion (implied by the use of  a constant Vo 
value) may not be totally valid. For example, it is 
likely that Vo depends upon both the radius and 
local stress. Therefore, improvements in the 
predicted Pa value at the crack tip might be 
obtained by analysing the corrosion (dissolution) 
rate at each point along the crack front. In particu- 
lar, there is recent evidence [15] that enhanced 
blunting can occur slightly below the stress inten- 
sity threshold. Unfortunately, an exact solution to 
this problem is complicated by the fact that both 
p and a can vary along the crack surface and, thus, 
is outside the scope o f the  present paper. 

TABLE II Experimental and predicted values of t s and V e 

Kid (MPa m 1/~) Experimental values 

t s (ksec) V e (m sec-1)* 

0.350 7.01 6.27 • 10 -9 
0.375 2.50 2.48 X 10 -8 
0.400 0.93 3.75 X 10 -8 
0.425 0.89 8.42 X 10 -8 

Predicted values 

t s (ksec) V e (m sec-l) * 

7.00 4.40 X 10 -9 
2.90 1.43 X 10 -8 
1.23 4.23 • 10 -8 
0.52 1.18 X I0 -7 

*Steady-state values. 

4(This criterion is based upon the results predicted from Equation 7. 
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The elliptical crack model  provides fairly accur- 
ate predictions of  the crack l eng th - t ime  behaviour 

(including the KIa dependence) associated with the 
sharpening process (KIa > Kith). For  this case, Ve 
is substantially greater than Vo so that  the dissolu- 
t ion rate occurring away f rom the crack tip has 
relatively minor effects upon the resulting 
transient behaviour. In particular, the V0 term in 
Equation 7 can be varied by several orders of  
magnitude without  significantly changing t s. 

The transient behaviour illustrated in Fig. 3 is 
quite similar to that  observed in a previous study 
of  the effects of  electric field upon crack growth 

[16, 17]. In this study, the application of  a sub- 
stantial electric field across a crack moving under 
the influence of  an applied KI, caused the crack to 
slow, and in some instances stop completely.  Upon 
removal of  the field, a transient period on the 
order of  1 to 10ksec was required for the crack 
velocity to reach its steady-state value. This sug- 
gests that  the crack tip experienced a blunting 
process during the application of  the field similar 
to that  described in the present paper. 

Finally, it must be emphasized that  the propo- 

sed model  is subject to several l imitations.  First,  
the assumption of  an elliptical crack implies that 
the crack surface is continuous, and thus does not  
account for atomic discreteness. In particular, it  is 
unlikely that  use of  a crack tip radius which is of 
the order of the atomic dimensions has any 
physical significance. Although more sophisticated 
and realistic crack geometries are possible, the 
associated mathematics often prove intractable. A 
second l imitation is that  the theoretical model is 

based on the assumption that a dissolution reac- 
tion is totally responsible for t ime-dependent 
changes in b and a. However, recent strength 
studies of a high silica glass aged in water [18] 
indicate that crack-tip blunting may actually 
involve dissolution and subsequent precipitat ion of 
material. The resulting rate at which blunting 
occurs is faster than that for the simple dissolution 
mechanism. This in part  may explain why Equa- 

tion 6 underestimates the extent  of  the crack-tip 
rounding. 
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